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Abstract—Channel estimation and precoding in hybrid
analog-digital millimeter-wave (mmWave) MIMO systems is a
fundamental problem that has yet to be addressed, before any
of the promised gains can be harnessed. For that matter, we
propose a method (based on the well-known Arnoldi iteration)
exploiting channel reciprocity in TDD systems and the sparsity of
the channel’s eigenmodes, to estimate the right (resp. left) singular
subspaces of the channel, at the BS (resp. MS). We first describe
the algorithm in the context of conventional MIMO systems, and
derive bounds on the estimation error in the presence of distor-
tions at both BS and MS. We later identify obstacles that hinder
the application of such an algorithm to the hybrid analog-digital
architecture, and address them individually. In view of fulfilling
the constraints imposed by the hybrid analog-digital architecture,
we further propose an iterative algorithm for subspace decompo-
sition, whereby the above estimated subspaces, are approximated
by a cascade of analog and digital precoder/combiner. Finally, we
evaluate the performance of our scheme against the perfect CSI,
fully digital case (i.e., an equivalent conventional MIMO system),
and conclude that similar performance can be achieved, especially
at medium-to-high SNR (where the performance gap is less than
5%), however, with a drastically lower number of RF chains (∼4
to 8 times less).

Index Terms—Millimeter wave MIMO systems, sparse chan-
nel estimation, hybrid architecture, hybrid precoding, subspace
decomposition, Arnoldi iteration, subspace estimation, echo-based
channel estimation.

I. INTRODUCTION

W ITH the global volume of mobile data expected to
increase by an order of magnitude between 2013 and

2019 , and the volume corresponding to mobile devices out-
weighing that of all other devices [1], mobile network opera-
tors have the monumental task of meeting this exponentially
increasing demand. Given that spectrum is a scarce and pre-
cious resource, future communication systems have to exhibit
unparalleled spectral efficiency. Though earlier results date
back to [2], [3], communication systems in the millimeter wave
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(mmWave) spectrum have been receiving growing interest over
the past years. mmWave communication systems have the dis-
tinct advantage of exploiting the huge amounts of unused (and
possibly unlicensed) spectrum in those bands - around 200
times more than conventional cellular systems. Moreover, the
corresponding antennae size and spacing become small enough,
such that tens-to-hundreds of antennas can be fitted on conven-
tional hand-held devices, thereby enabling gigabit-per-second
communication.

However, the large number of radio frequency (RF) chains
required to drive the increasing number of antennas, inevitably
incurs a tremendous increase in power consumption (namely
by the analog-to-digital converters), as well as added hardware
cost. One elegant and promising solution to remedy this inher-
ent problem is to offload part of the precoding/processing to the
analog domain, via analog precoding (resp.combining), i.e., a
network of phase shifters to linearly process the signal at the
the base station (BS) (resp. mobile station (MS) (as shown in
Fig. 1). This so-called problem of analog and digital co-design
for beamforming and precoding in low-frequency regime was
first investigated in [4], [5]. This architecture was later stud-
ied within the context of higher frequency (mmWave) systems
in [6]–[8] - under the name of hybrid precoding/architecture
- for the precoding problem. A similar setup for the case of
beamforming was considered in [9]–[11].

However, several fundamental challenges have to resolved
before any of the promised gains can be harnessed, namely,
estimating the (large) mmWave channel, and designing the ana-
log/digital precoders and combiners accordingly. We underline
the fact that classical training schemes developed for Multiple-
input Multiple-output (MIMO) systems are not applicable for
that particular case. Moreover, note that our proposed technique
encompasses both beamforming and precoding, i.e., it does not
depend on the number of streams.

After a series of approximations to the mutual information,
and taking into account precoding (excluding the receive com-
biners), [6] derived an optimality condition relating the analog
and digital precoders to the optimal unconstrained precoder
(i.e., the right singular vectors of the channel), by assuming
full channel state information (CSI) at both the BS and MS.
This assumption was later relaxed in [7] where an algorithm
for estimating the dominant propagation paths was proposed,
based on the previously proposed concept of hierarchical code-
books sounding in [10], [11]. However, the algorithm requires
a priori knowledge of the number of propagation paths (i.e. the
propagation environment), its performance is affected by the
sparsity level of the channel, and exhibits relatively elevated
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complexity. Finally, it appears rather inefficient to estimate the
entire channel, while only a few eigenmodes are needed for
transmission: this is particularly relevant in mmWave MIMO
channels, since the majority of eigenmodes have negligible
power.

The approach we present here attempts to address the above
limitations. The proposed algorithm is based on the well known
Arnoldi Iteration, exploits channel reciprocity inherent in Time-
Division Duplexing (TDD) MIMO systems to gradually build
an orthonormal basis for the corresponding Krylov subspace,
and directly estimates the dominant left / right singular modes
of the channel, rather than the entire channel. We then propose
an iterative method for subspace decomposition, to approxi-
mate the estimated right (resp. left) singular subspace by a
cascade of analog and digital precoder (resp. combiner), while
taking into account the hardware constraints of this so-called
hybrid analog-digital architecture. The subspace estimation
(SE) algorithm is based on BS-initiated echoing, whereby the
BS sends along some beamforming vector, and the MS echoes
its received signal back to the BS (using amplify-and-forward),
thereby enabling the BS to obtain an estimate of the effective
uplink-downlink channel. We first detail the algorithm in the
context of conventional MIMO, taking into account distortions
in the the system (e.g., noise, or other disturbances), derive
bounds on the estimation error, and highlight its desirable fea-
tures. We then adapt its structure, to fit the many operational
constraints dictated by the hybrid analog-digital architecture.
While we feel that aspects such as complexity, overhead and
numerical stability are best left for future works, we do shed
light on each of them. Although the main results of the paper
were earlier presented in [12], we provide in this work an
in-depth look at our proposed methods, and derive several
performance results.

In the following, we use bold upper-case letters to
denote matrices, and bold lower-case letters denote vectors.
Furthermore, for a given matrix A, [A]i:j denotes the matrix
formed by taking columns i to j, of A, tr(A) denotes its trace,
‖A‖2F its Frobenius norm, |A| its determinant, A† its conju-
gate transpose. [A]i,j = ai,j denotes element (i, j) of A, ai the
ith of column A, and [a]i = ai element i in vector a. [A]SL

and [A]U represent the matrix formed by the strictly lower
and upper triangular matrix of a square matrix A, respectively.
In denotes the n× n identity matrix, diag(x) is a diago-
nal matrix with elements of x on its diagonal, �(x) the real
part of x, σmax[U ] / σmin[U ] the maximum/minimum singular
value of U . Moreover, Û = qr(U) refers to the semi-unitary
matrix returned by the QR algorithm, with U †U = I . Finally,
we let {n} � {1, . . . , n}, and Sp,q = {X ∈ C

p×q | |Xij | =
1/
√
p, ∀(i, k) ∈ {p} × {q}}.

II. SYSTEM MODEL

A. Signal Model

Assume a single user MIMO system with M and N anten-
nas at the BS and MS, respectively, where each is equipped
with r RF chains, and sends d independent data streams (where

Fig. 1. Hybrid Analog-Digital MIMO system architecture

we assume that d ≤ r ≤ min(M,N)). The downlink (DL)
received signal is given by

y(r) = HFGx(t) + n(r) (1)

where H ∈ C
N×M is the complex channel - assumed to

be slowly block-fading, F ∈ C
M×r is the analog precoder,

G ∈ C
r×d the digital precoder (as shown in Fig. 1), y(r)

the N -dimensional signal at the MS antennas, x(t) is
the d-dimensional transmit signal with covariance matrix
E[x(t)x(t)† ] = Id and n(r) is the AWGN noise at the MS,
with E[n(r)n(r)† ] = σ2

(r)IN . Note that (t) and (r) sub-
scripts/superscripts denote quantities at the BS and MS, respec-
tively. Both the analog precoder and combiner are constrained
to have constant modulus elements (since the latter represent
phase shifters), i.e., F ∈ SM,r and W ∈ SN,r (also referred to
as the constant-modulus or constant-envelope constraint). We
adopt a total power constraint on the effective precoder, i.e.,
‖FG‖2F ≤ d, a widespread one in the hybrid analog-digital
precoding literature [6], [7].

With that in mind, the received signal after filtering in the DL
is given as,

x̃ = U †W †y(r) = U †W †HFGx(t) +U †W †n(r) (2)

where W ∈ C
N×r and U ∈ C

r×d are the analog and digi-
tal combiners, respectively1. We also assume a TDD system,
where channel reciprocity holds. Finally, we denote the SVD of
H as,

H =
[
Φ1, Φ2

] [Σ1 0
0 Σ2

] [
Γ†
1

Γ†
2

]
= Φ1Σ1Γ

†
1 +Φ2Σ2Γ

†
2

(3)

where Γ1 ∈ C
M×d and Φ1 ∈ C

N×d are semi-unitary, and
Σ1 = diag(σ1, . . . , σd) is diagonal with the d largest singular
values of H (in decreasing order).

B. Motivation

Keeping in line with previous work in that area, our aim is to
design the precoders and combiners as follows,

1Similarly, exploiting channel reciprocity, the uplink received signal is given
by y(t) = H†WUx(r) + n(t) where y(t) is the M -dimensional signal at

the BS and n(t) is the AWGN noise at the BS, such that E[n(t)n(t)† ] =
σ2
(t)

IM .
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(F �,G�) =

⎧⎨
⎩min

F , G
‖Γ1 − FG‖2F

s. t. ‖FG‖2F ≤ d, F ∈ SM,d

(W �,U�) =

⎧⎨
⎩ min

W , U
‖Φ1 −WU‖2F

s. t. W ∈ SN,d

(4)

The latter design criterion has been quite prevalent in ear-
lier works relating to the hybrid analog-digital architecture,
and applied rather successfully in [6], [7], [13], [14]. After a
series of approximations to the mutual information in [6], it
was shown that the optimal precoders, F ,G, are formulated
in exactly the same fashion as above (though their formulation
did not include receive combining).

Moreover, we use the following expression as a performance
metric (i.e., the “user-rate” corresponding to a given choice of
precoders and combiners),

R = log2

∣∣∣Id +HeH
†
e (σ

2
(r)U

†W †WU)−1
∣∣∣ (5)

where He = U †W †HFG, 1
σ2
(r)

� SNR is the signal-to-noise

ratio. Moreover we assume, for simplicity, that uniform power
allocation is performed (no waterfilling), keeping in mind that
a power allocation matrix Λ can be easily incorporated in the
expression. Although not directly optimized, the above expres-
sion was used in [6], within the context of hybrid analog-digital
precoding. As we will discuss below, the value of the expression
in (5) is related to achievable rates over the considered hybrid
analog-digital MIMO link; in particular R becomes an achiev-
able rate in the scenario that both the BS and MS are provided
perfect knowledge of H .

In a nutshell, (4) boils down to finding FG (resp. WU )
that “best” approximate Γ1 (resp. Φ1). Moreover, if there exists
optimal precoders and combiners that make the distances in (4)
zero, then they must satisfy

F �G� = Γ1, W �U� = Φ1.

We denote by R� the resulting “user-rate” that is obtained by
plugging in the above precoders/combiners in (5). Then R� can
be expressed as,

R� � R(F �,G�,W �,U�) = log2
∣∣Id + SNR Σ2

1

∣∣ (6)

Following the above discussion on the achievability of R, R� is
the maximum achievable rate over the precoders and combin-
ers, when H is known to both BS and MS. We underline the
fact that R in (5) depends on the subspace spanned by the pre-
coders/combiners, rather than the Euclidean distance between
the right/left dominant subspace and the precoder/combiner,
i.e., (4). However, optimizing metrics that involve span or
chordal distances, is not straightforward. We thus emphasize
that attempts at directly maximizing R in (5) are outside the
scope of this work: rather, the focus is put on proposing
mechanisms for subspace estimation and decomposition, and
analyzing their performance.

Moreover, since we assume that no channel information is
available at neither the BS, nor the MS, our aim is firstly to

obtain an estimate of the subspaces in question, i.e. Φ̃1 ≈ Φ1 at
the MS, and Γ̃1 ≈ Γ1 at the BS. We then propose methods that
optimize the precoders and combiners to accurately approx-
imate the estimated subspaces, by providing means to solve
problems such as ‖Γ̃1 − FG‖2F and ‖Φ̃1 −WU‖2F (while
taking into consideration the constraints inherent to the hybrid
analog-digital architecture).

III. EIGENVALUE ALGORITHMS AND

SUBSPACE ESTIMATION

A. Subspace Estimation vs. Channel Estimation

The aim of subspace estimation (SE) methods in MIMO
systems is to estimate a predetermined low-dimensional sub-
space of the channel, required for transmission. We illustrate
this in the context of conventional MIMO systems, i.e., where
precoders/combiners are fully digital. For the sake of expo-
sition, we start with a simple toy example, where noiseless
single-stream transmission is assumed (and ignoring any phys-
ical constraints). The BS selects a random unit-norm beam-
forming vector, p1, and then sends p1x

(t), where x(t) = 1.
The received signal, q1 = Hp1, is echoed back to the BS
(in effect, this implies that the signal is complex conjugated
before being sent), in an Amplify-and-Forward (A-F) like fash-
ion.2 Then, exploiting channel reciprocity, the received signal
at the BS is first normalized, i.e., p2 = H†q1/‖H†q1‖2 =
H†Hp1/‖H†Hp1‖2, and then echoed back to the MS.
This simple procedure is done iteratively, and the resulting
sequences {pl} at the BS, and {ql} at the MS, are defined as
follows,

pl+1 = H†Hpl/‖H†Hpl‖2; ql+1 = Hpl (7)

It was noted in [15] that using the Power Method (PM), one
can show that as l → ∞, pl → γ1 and ql → σ1φ1, implying
that this seemingly simple “ad-hoc” procedure will converge
to the maximum eigenmode transmission. The authors of [15]
also generalized the latter method to multistream transmission,
i.e., by estimating Γ1 and Φ1, using the Orthogonal/Subspace
Iteration (which was dubbed Two-way QR (TQR) in [15], [16]).

We note that SE schemes such as the ones described above,
offer the following distinct advantage over classical pilot-based
channel estimation: in spite of the large number of transmit
and receive antennas, SE methods can estimate the dominant
left/right singular subspaces with a relatively low communica-
tion overhead, when the latter have small dimension (relative
to the channel dimensions). Consequently, subspace estima-
tion is much more efficient than channel estimation, especially
in large low-rank MIMO systems such as mmWave channels
(because the latter estimates the dominant low-dimensional
subspace instead of the whole channel). For the reason above,
our proposed algorithm falls under the umbrella of SE meth-
ods. We first describe this algorithm in the context of “classical”
MIMO systems, and later adapt it to the hybrid analog-digital
architecture.

2This mechanism for MIMO subspace estimation, where the MS echoes back
the transmitted signal using A-F, was first reported in [15].
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TABLE I
ARNOLDI PROCEDURE

B. Arnoldi Iteration for Subspace Estimation

Despite the fact that Krylov subspace methods (such as the
Arnoldi and Lanczos Iterations for symmetric matrices) are
among the most common methods for eigenvalue problems
[17], their use in the area of channel/subspace estimation is lim-
ited to equalization for doubly selective OFDM channels [18],
and channel estimation in CDMA systems [19]. Algorithms
falling into that category iteratively build a basis for the Krylov
subspace, Km = span{x,Ax, . . . ,Am−1x}, one vector at a
time. We use one of many variants of the so-called Arnoldi
Iteration/Procedure, and a simplified version of the latter is
shown in Table I (as presented in [20]). The algorithm returns
Qm = [q1, . . . , qm] ∈ C

M×m and an upper Hessenberg matrix
Tm ∈ C

m×m, such that

Q†
mAQm = Tm, Q†

mQm = Im.

It can be shown that the algorithm iteratively builds Qm, an
orthonormal basis for Km (when roundoff errors are neglected),
and that Q†

mAQm = Tm. We then say that the eigenvalues/
eigenvectors of Tm are called Ritz eigenvalues/eigenvectors,
and approximate the eigenvalues/eigenvectors of A. The main
idea behind processes such as the Arnoldi (and Lanczos) is to
find the dominant eigenpairs of A, by finding the eigenpairs
of Tm.

We note that the Arnoldi algorithm is a generalization of the
Lanczos algorithm for the non-symmetric case, i.e., the latter
is specifically tailored for cases where A � 0 (this is clearly
the case in this work, since A = H†H). This being said, the
reason for not using the Lanczos iteration is that in practice,
noise that is inherent to the echoing process, makes the Lanczos
algorithm not applicable: namely, the requirement that Tm is
tridiagonal, is violated.

Our goal in this section is to first apply the above algorithm
to estimate the d largest eigenvectors of A = H†H at the BS
(which are exactly Γ1), by implementing a distributed version
of the Arnoldi process, that exploits the channel reciprocity
inherent to TDD systems. Moreover, we extend the original for-
mulation of the algorithm to incorporate a distortion variable
(representing noise, or other distortions, as will be done later).

It becomes clear at this stage, that the BS requires knowledge
of the sequence {H†Hql}ml=1, needed for the matrix-vector
product in step 1 (Table I): the latter can be accomplished
by obtaining an estimate pl, of H†Hql, l ∈ {m}. Without
any explicit CSI at neither the BS nor the MS, we exploit the
reciprocity of the medium to obtain such an estimate, via BS-
initiated echoing: the BS sends ql over the DL channel, the MS
echoes back the received signal in an A-F like fashion, over the

TABLE II
SUBSPACE ESTIMATION USING ARNOLDI ITERATION (SE-ARN)

uplink (UL) channel (following the process proposed in [21],
and detailed in Sect. III-A), i.e.,

DL : sl = Hql +w
(r)
l

UL : pl = H†sl +w
(t)
l = H†Hql +H†w(r)

l +w
(t)
l

= H†Hql + w̃l (8)

where sl is the received signal in the DL, w(t)
l and w

(r)
l are

distortions at the BS and MS, respectively (representing noise
for example).

After the echoing phase, the BS has an estimate, pl, of
H†Hql, as seen from (8). The remainder of the algorithm
follows the conventional Arnoldi Iteration, and is shown in
the Subspace Estimation using Arnoldi (SE-ARN) procedure
(Table II). In addition to Tm at the output of the algorithm, we
define the matrices, T̃m, W̃m and Ẽm, as follows,

[T̃m]i,l =

⎧⎪⎪⎨
⎪⎪⎩
q†
iH

†Hql, if l ≤ m, ∀i ≤ l

‖rl‖2, if l < m, i = l + 1

0, otherwise

W̃m = [w̃1, . . . , w̃m], Ẽm = [Q†
mW̃m]SL (9)

where rl is given in Step 2.b (Table II). Note that similarly to the
conventional Arnoldi Iteration, T̃m is an the upper Hessenberg
matrix. It then follows from the above definitions that

Tm = T̃m + [Q†
mW̃m]U . (10)

This can be easily verified by plugging in Step 1.b into 2.a in
Table II.

At the output of the SE-ARN procedure, the dominant eigen-
pairs of H†H are approximated by those of Tm as follows.
Let Tm = Θ̃Λ̃Θ̃−1 be eigenvalue decomposition of Tm, where
Θ̃ is the (possibly non-orthonormal) set of eigenvectors. Then,
it can easily be shown that Γ̃1 = qr(Qm[Θ̃]1:d) are the Ritz
eigenvectors of H†H , where [Θ̃]1:d has as columns the eigen-
vectors of Tm associated with the d largest eigenvalues (in
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magnitude).3 Moreover, Σ̃1, the Ritz eigenvalues of H†H ,
come for free once the Ritz eigenvectors are obtained (Table II).
Note that the latter procedure results in the BS obtaining Γ̃1,
and consequently Σ̃1, using the so-called BS-initiated echo-
ing. This same procedure can be applied using MS-initiated
echoing, to estimate Φ̃1 (i.e., the eigenvectors of HH†), at
the MS.

C. Perturbation Analysis

In what follows, we extend some of the known properties of
the conventional Arnoldi iteration, to account for the estimation
error, emanating from the distortion variable.

Lemma 1: For the output of the Arnoldi process the follow-
ing holds,
(P1) :

Q†
mAQm = T̃m − Ẽm � Cm, (11)

where Cm = SmΛmS−1
m is such that [Λ]i,i ≥ 0 and

S−1
m = S†

m

(P2) : Let (λ
(m)
i , s

(m)
i ) be any eigenpair of Cm. Then

(λ
(m)
i , θ

(m)
i � Qms

(m)
i ) is an approximate Ritz eigenpair for

A. Furthermore, the approximation error is such that,

‖Aθ
(m)
i − λ

(m)
i θ

(m)
i ‖22 ≤ c(i)m + ‖IM −QmQ†

m‖2F ‖W̃m‖2F ,
(12)

where c
(i)
m = ([T̃m]m+1,m|[s(m)

i ]m|)2.

(P3) : As m → M , ‖Aθ
(m)
i − λ

(m)
i θ

(m)
i ‖22 → 0, implying

that the eigenpairs of Cm perfectly approximate the eigenpairs
of A(up to round-off errors).

Proof: The proof is shown in Appendix A. �
We underline the fact that if the distortion variable W̃m is

zero, the above derivations reduce to the well-known results on
the Arnoldi process [20, Sect. 6.2]. Lemma 1 establishes the
fact that each eigenpair (λ(m)

i , s
(m)
i ) of Cm, is associated with

one eigenpair (λ(m)
i ,θ

(m)
i ) of A.4

Thus, one might be tempted to conclude at this point, that by
computing the eigenpairs of Cm, one can perfectly estimate the
eigenpairs of A, despite the presence of the distortion variable
W̃m. However, the fact remains that Cm � T̃m − Ẽm cannot
be computed, mainly because Ẽm is not known to the BS. As
a result, Tm at the output of the Arnoldi process will be used
instead to approximate the eigenpairs of A . Now that we estab-
lished that the eigenpairs of Cm approximate that of A, the
natural question is how close are the eigenpairs of Tm, to that
of Cm .

For that purpose, we first show the following,

3Note that, to be exact, the Ritz eigenvectors do not contain any estimation
noise. That being said, we stick to this nomenclature, with a slight abuse of
definition.

4Though (P3) in Lemma 1 implies that the error in approximating the eigen-
pairs of A with those of Cm vanishes as m → M , our simulations will later
show that very good approximations can be obtained, even for m � M .

Cm +Q†
mW̃m =

(
T̃m − Ẽm

)
+Q†

mW̃m

= T̃m +
(
Q†

mW̃m − [Q†
mW̃m]SL

)
= T̃m +

[
Q†

mW̃m

]
U
� Tm (13)

where the first equality follows from the definition of Cm, and
the last one from (10). Thus Cm can be viewed as the matrix
in question, and Pm � Q†

mW̃m a perturbation matrix. We then
apply the Bauer-Fike Theorem [22, Th. 7.2.2] [22] to bound the
difference in eigenvalues.

Lemma 2: Every eigenvalue λ̃ of Tm = Cm + Pm satisfies

|λ̃− λ| ≤ √
m ‖W̃m‖F ,

where λ is an eigenvalue of Cm.

Proof: Refer to Appendix B �
Summarizing thus far, Lemma 1 showed that the eigenpairs

of A can be approximated by the eigenvalues of Cm, with arbi-
trarily small error. However, since the latter is not available,
we approximate the eigenpairs of Cm (and consequently of
A) by those of Tm, the upper Hessenberg matrix at the out-
put of the Arnoldi process. Finally, Lemma 2 established the
fact that this approximation error, for the eigenvalues, is upper
bounded by the magnitude of the perturbation itself. We note
that the relevant “error-metric” here is the distance between
the true subspace Γ1, and estimated subspace Γ̃1 ∝ QmΘ̃1:d

(Table II). This does suggest that the estimation error is depen-
dent on Θ̃1:d, the eigenvectors of Tm. However, performing a
similar sensitivity analysis on the eigenvectors is much more
involved, since the sensitivity of eigenvectors generally depends
on the clustering of eigenvalues.

IV. HYBRID ANALOG–DIGITAL PRECODING FOR

MMWAVE MIMO SYSTEMS

In this section we turn our attention to applying the above
framework for subspace estimation and precoding, to the
hybrid analog-digital architecture. As this section will gradually
reveal, several obstacles have to be overcome for that matter.
We start by presenting some preliminaries that will be used
throughout this section.

A. Preliminaries: Subspace Decomposition

We will limit our discussion to the digital and analog pre-
coder, keeping in mind that the same applies to the digital and
analog combiner. In conventional MIMO systems, the estimates
of the right and left singular subspace, Γ̃1 and Φ̃1, obtained
using SE-ARN, can directly be used to diagonalize the chan-
nel. However, the hybrid analog-digital architecture entails a
cascade of analog and digital precoder. Thus, Γ̃1 has to be
decomposed into FG (hence the term Subspace Decomposition
(SD)), as follows,⎧⎪⎪⎨

⎪⎪⎩
min
F , G

h0(F ,G) = ‖Γ̃1 − FG‖2F
s. t. h1(F ,G) = ‖FG‖2F ≤ d

F ∈ SM,d

(14)
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We underline the fact that the authors in [6] arrived to the
same formulation as (14), and proposed a variation on the well-
known Orthogonal Matching Pursuit (OMP), to tackle it. The
same framework was recently extended in [14] to relax the need
for dictionaries based on the array response matrix. An alternate
decomposition was proposed by [23], where the optimization
metric is the user rate. Both works were published after the
initial submission of our paper.

Within the context of hybrid precoding, the authors in [4]
showed that there exists (non-unique) F ∈ SM,r, g ∈ C

r×1

such that Γ̃1 = Fg, if and only if r ≥ 2. This was extended in
[14] where it was shown that there exists F ∈ SM,r,G ∈ C

r×d

such that Γ̃1 = FG, if r ≥ 2d. We note that for such cases,
the cost function in (14) is zero, and we refer to such cases
as optimal decomposition -whose performance we evaluate
in the numerical results section: although the aforementioned
schemes use all the available RF chains for the decomposition
(and our decomposition uses a subset of the RF chains), the
sum-rate performance is actually the same.

To a certain extent, (14) is reminiscent of formulations
arising from areas such as blind source separation, (sparse) dic-
tionary learning, and vector quantization [24], [25]. Though
there is a battery of algorithms and techniques that have been
developed to tackle such problems, the additional hardware
constraint on F , i.e. F ∈ SM,r makes the use of such tools
not possible. As a result, we will resort to developing our
own algorithm. In spite of the non-convex and non-separable
nature of the above quadratically-constrained quadratic pro-
gram, we propose an iterative method that attempts to determine
an approximate solution.

1) Block Co-Oordinate Descent for Subspace
Decomposition: In this part, we further assume that only
d of the r available RF chains are used, i.e., F ∈ C

M×d and
G ∈ C

d×d (the reason for that will become clear later in this
section). The coupled nature of the objective and constraints
in (14) suggests a Block Coordinate Descent (BCD) approach.
The main challenges arise from the coupled nature of the
variables in the constraint (since the latter makes convergence
claims of BCD, not possible [26]), and from the hardware
constraint on F . We will show that a BCD approach implicitly
enforces the power constraint in (14), and consequently the
latter can be dropped without changing the problem.

Our approach consists in relaxing the hardware constraint
on F , and then applying a Block Coordinate Descent (BCD)
approach to alternately optimize F and G (while projecting
each of the obtained solutions for F on S). For that matter,
we first define the Euclidean projection on the set S in the
following proposition.

Proposition 1: Let X ∈ C
M×d be defined as [X]i,k =

|xi,k| ejφi,k , ∀(i, k), and

Y = ΠS [X]
�
= argmin

U∈SM,d

‖U −X‖2F

denote its (unique) Euclidean projection on the set SM,d. Then
[Y ]i,k = (1/

√
M) ejφi,k , ∀(i, k).

Proof: The proof is straightforward variation on previous
results such as [4]. �

TABLE III
BLOCK COORDINATE DESCENT FOR SUBSPACE

DECOMPOSITION (BCD-SD)

The latter result implies that given an arbitrary F , finding the
closest point to F , lying in SM,d simply reduces to setting the
magnitude of each element in F , to 1/

√
M .

Neglecting the constraint on F in (14), one can indeed show
that for fixed G (resp. F ), the resulting subproblem is convex in
F (resp. G). With this in mind, our aim is to produce a sequence
of updates, {Fk,Gk}k such that the sequence {h0(Fk,Gk)}k
is non-increasing (keeping in mind that monotonicity cannot
be shown due to the coupling in the power constraint). Thus,
given Gk, each of the updates, Fk+1 and Gk+1, are defined as
as follows,

(J1) Fk+1 � min
F

h0(F ) = ‖Γ̃1 − FGk‖2F
(J2) Gk+1 � min

G
h0(G) = ‖Γ̃1 − Fk+1G‖2F

Both (J1) and (J2) are instances of a non-homogeneous
(unconstrained) convex quadratically-constrained quadratic
programming (QCQP) that can easily be solved (globally) by
finding stationary points of their respective cost functions, to
yield,

Fk+1 = Γ̃1G
†
k

(
GkG

†
k

)−1

(15)

Gk+1 =
(
F †
k+1Fk+1

)−1

F †
k+1Γ̃1 (16)

We note that our earlier assumption that only d of the RF chains
are used here (i.e. G is square), guarantees that, (GlG

†
l ) in (16)

is invertible, almost surely: in fact, our numerical results show
that the incurred performance loss is quite negligible.

Moreover, note that the solution in (15) does not necessar-
ily satisfy the hardware constraint on F . Thus, the result of
Proposition 1 can be used to compute the projection of F on
SM,d. To prove our earlier observation that the optimal updates
Fk+1 and Gk+1 satisfy the power constraint in (14), we plug
(16) into the following (dropping all subscripts for simplicity),

‖FG‖2F = tr

⎛
⎜⎝Γ̃†

1F (F †F )−1F †F︸ ︷︷ ︸
=Id

(F †F )−1F †Γ̃1

⎞
⎟⎠

≤ tr
(
(F †F )−1F †F

)
tr
(
Γ̃1Γ̃

†
1

)
= d (17)

where we assumed that ‖Γ̃1‖2F = 1 w.l.o.g., and used the fact
that tr(AB) ≤ tr(A)tr(B) for A,B � 0. Note that the above
relation holds for any arbitrary full-rank F , and thus, the power
constraint is satisfied even after applying the projection step.
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The above shows that if BCD is used, then the power constraint
in (14) is always enforced. The corresponding method is termed
Block Coordinate Descent for Subspace Decomposition (BCD-
SD), and is shown in Table III.

Remark 1: We underline the fact that due to the projec-
tion step, one cannot show that the sequence {ho(Fk,Gk)}k
is non-increasing. Nevertheless, despite the fact that monotonic
convergence of BCD-SD cannot be showed analytically, our
simulations indicate that the latter is indeed the case, under
normal operating conditions.

Remark 2: It can be easily verified that the optimal F �,G�

that maximize R in (5) are such that ‖F �G�‖ = d. Though the
optimal solution to (14) is not invariant to scaling, as far as the
performance metric in (5) is concerned, there in no loss in opti-
mality in scaling the solution given by BCD-SD, to fulfill the
power constraint with equality.

2) One-Dimensional Case: Note that echoing (e.g., our
proposed mechanism in Table II) relies on the BS being able
to send any vector ql, to be echoed back by the MS. For the
hybrid analog-digital architecture, this translates into the BS
being able to (accurately) approximate ql by flgl, where fl is
a vector, gl is a scalar. As a result, subspace decomposition for
the one-dimensional case is of great interest here. When d = 1,
(14) reduces to the problem below,

Lemma 3: Consider the single dimension SD problem,⎧⎨
⎩min

f , g
ho(f , g) = ‖f‖22 g2 − 2g�(f †γ̃1)

s. t. [f ]i = 1/
√
M ejφi , ∀i

(18)

where g ∈ R+ and [γ̃1]i = rie
jθi . Then the problem admits a

globally optimum solution given by, [f�]i = 1/
√
M ejθi , ∀i

and g� = ‖γ̃1‖1/
√
M

Proof: Refer to Appendix C �
Similarly to (17), it can be verified that a power constraint

is indeed implicitly verified. Moreover, the approximation error
e � γ̃1 − fg is such that,

[e]i = |ri − ‖γ̃1‖1/M |ejθi , ∀i ∈ {M}. (19)

We note that when considering the effective beamformer, i.e.,
fg, the solution given by Lemma 3 is to some extent rem-
iniscent of equal gain transmission in [27], [28], in terms of
the optimal phases. We recall that a similar hybrid beamform-
ing setup was considered in [4] where the authors optimize
u,w,f , g, to maximize the SNR as well as the spectral effi-
ciency. Although our formulation optimizes the same quanti-
ties, the optimization metric we consider, the subspace distance,
is different.

Note that the decomposition can be written in a simple form.
Given a vector γ̃1, its globally optimal decomposition (from the
perspective of (14)) is given as,

γ̃1 ≈ g�1f
�
1 � (‖γ̃1‖1/

√
M) ΠS [γ̃1].

This can be generalized to obtain an alternate method to BCD-
SD, by decomposing Γ̃1, in a column-wise fashion,

Γ̃1 = [γ̃1, . . . , γ̃d] ≈
[
g�1f

�
1 , · · · , g�df�

d

]
� (1/

√
M) [ΠS [γ̃1], · · · ,ΠS [γ̃d]] diag(‖γ̃1‖1, · · · , ‖γ̃d‖1)

(20)

Fig. 2. Average subspace distance ‖Γ̃1 − FG‖2F , for our proposed method
and OMP

3) Numerical Results: As mentioned earlier, (14) was for-
mulated and solved in [6], using a variation on the well-known
Orthogonal Matching Pursuit (OMP), by recovering F in a
greedy manner, then updating the estimate of G in a least
squares sense. We thus compare its average performance with
our proposed method, for a case where Γ̃1 ∈ C

M×d is such that
M = 64, r = 10 (for several values of d). The curves are aver-
aged over 500 random realizations of Γ1 (the latter are random
unitary matrices). Moreover, we follow the same setup for OMP
as that of [6], namely, that the dictionary is designed based on
the array response vectors (of size 256). The reason for the
large performance gap in Fig. 2 is that BCD-SD attempts to
find a locally optimal solution to (14) (though this cannot be
shown due to the coupled variables). Moreover, OMP is halted
after r iterations, since it recovers the columns of F one at a
time, whereas our proposed method runs until reaching a stable
point. With that in mind, although OMP might perform better in
terms of approximating the span of Γ1, it is challenging to mea-
sure and optimize such metrics in practice. Moreover, we recall
that in its original formulation in [6] OMP is indeed formulated
to solve the problem at hand (i.e. (14)), and thus the compari-
son seems fair. Interestingly, despite its extreme simplicity, the
column-wise decomposition in (20) offers a surprisingly good
performance (as seen in Fig. 2).

B. Echoing in the Hybrid Analog–Digital Architecture

It is clear by now that the gist behind the schemes described
in this work, is to obtain an estimate of {H†Hql}ml=1 at the BS,
by exploiting channel reciprocity, using BS-initiated echoing
described in (8). However, in the case of the hybrid analog-
digital architecture, there are several issues that prevent the
application of the latter procedure. Firstly, the digital beam-
forming vector ql needs to be approximated by a cascade of
analog and digital beamformer, using the decomposition in
Sect. IV-A, i.e., ql = f̃lg̃l + el, where el is the approxima-
tion error given in (19). Moreover, the BS-initiated echoing
relies on the MS being able to amplify-and-forward its received
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signal: this is clearly not possible using the hybrid analog-
digital architecture. In addition, neither the BS nor MS can
digitally process the received signal at the antennas: only after
the application the analog precoder/combiner (and possibly the
digital precoder/combiner) can the baseband signal be digitally
manipulated [6], [10].

With this in mind, we emulate the A-F step in BS-initiated
echoing, (8), as follows. ql is decomposed into f̃lg̃l at the BS
and sent over the DL. The MS linearly processes the received
signal in the downlink, with the analog combiner, i.e., sl =
W †

l (Hf̃lg̃l), and same filter is used as the analog precoder,
to process the transmit signal in the UL, i.e., Wlsl. Finally, the
received signal at the BS is processed with the analog precoder,
Fl. The resulting estimate, pl, at the BS is,

pl = F †
l H

†WlW
†
l H(ql − el) (21)

Note that the above process is possible using the hybrid
analog-digital architecture. Since noise is present in any uplink/
downlink transmission, for clarity in what follows, we drop the
noise-related terms from all equations. Needless to say, their
effect is accounted for in the numerical results. It is clear from
(21) that pl is no longer a “good” estimate of H†Hql, for the
reasons stated below.

1. Analog-Processing Impairments (API): Processing the
signal at the MS with the analog combiner/precoder Wl

greatly distorts the singular values/vectors of the effec-
tive channel. Moreover, processing the received signal at
the BS with the analog combiner Fl ∈ C

M×r implies that
pl is now a low-dimensional observation of the desired
M -dimensional quantity H†Hql (since r < M ).

2. Decomposition-Induced Distortions (DID): The error
from decomposing ql at the BS, el, further distorts the
estimate (as seen in (21)).

The above impairments are a byproduct of shifting the
burden of digital precoding, to the analog domain. In what fol-
lows, these impairments will individually be investigated and
addressed.

1) Cancellation of Analog-Processing Impairments: Our
proposed method for mitigating analog-processing impairments
(API) relies on the simple idea of taking multiple measurements
at both the BS and MS, and linearly combining them, such that
WlW

†
l and FlF

†
l approximate an identity matrix.

In the DL, ql is approximated by f̃lg̃l, and f̃lg̃l is sent over
the DL channel5, Kr times (where Kr = N/r), each linearly
processed with an analog combiner {Wl,k ∈ C

N×r}Kr

k=1, to
obtain the digital samples {sl,k}Kr

k=1 (this process is shown in

5When sending f̃lg̃l over the DL, we can use d RF chains, i.e.,

FlGl 1d = [f̃l, · · · , f̃l] diag(g̃l, · · · , g̃l) 1d = df̃lg̃l

thereby resulting in an array gain factor of d. Moreover, since we know from
(17) that ‖f̃lg̃l‖22 ≤ 1, indeed this transmission scheme satisfies the power
constraint. We also make use of this observation in the UL sounding.

TABLE IV
REPETITION-AIDED (RAID) ECHOING

Table IV)). Moreover, the analog combiners are taken from the
columns of a Discrete Fourier Transform (DFT) matrix, i.e,

[Wl,1, . . . ,Wl,Kr
] = Dr, (22)

where Dr ∈ C
N×N is a normalized N ×N DFT matrix (i.e.,

where each column has unit norm and satisfies the unit-modulus
constraint). The same analog combiners, {Wl,k}k, are used to
linearly combine {sl,k}k, to form s̃l. We dub this procedure
Repetition-Aided (RAID) Echoing, and the aforementioned DL
phase, is shown in Table IV. The resulting signal at the MS, s̃l,
can be rewritten as,

s̃l =

(
Kr∑
k=1

Wl,kW
†
l,k

)
H(df̃lg̃l) = dHf̃lg̃l, (23)

where equality follows from our earlier definition of {Wl,k}k in
(22). Note that the effect of processing the received signal with
the analog combiner has been completely suppressed. Now, s̃l
is normalized, and echoed back in the UL direction.

A quite similar process is used in the UL: s̃l is first decom-
posed into w̃lũl, d RF chains are used to send it over the UL,
Kt times (where Kt = M/r), and each observation is linearly
processed with an analog combiner {Fl,m ∈ C

M×r}Kt
m=1. The

resulting digital samples {zl,m}Kt
m=1 are again linearly com-

bined with the same {Fl,m}m, to obtain the desired estimate
pl. Similar to the DL case, the analog combiners are taken from
the columns of a Discrete Fourier Transform (DFT) matrix, i.e,
[Fl,1, . . . ,Fl,Kt

] = Dt. The process for the UL is also shown
in Table IV. We combine its steps to rewrite pl as,

pl =

(
Kt∑

m=1

Fl,mF †
l,m

)
H†(dw̃lũl) = dH†w̃lũl (24)

At the output of the RAID procedure, the BS has the
following pl,

pl = dH†w̃lũl = dH†
(
s̃l − e

(r)
l

)
= dH†

(
dHf̃lg̃l − e

(r)
l

)
= d2H†Hql − d2H†He

(t)
l − dH†e(r)l (25)

Note that e(t)l = ql − f̃lg̃l (resp. e(r)l = s̃l − w̃lũl) is the error
emanating from approximating ql (resp. s̃l) at the BS (resp.
MS), that we dub BS-side (resp. MS-side) decomposition-
induced distortion (DID). It is quite insightful to compare
pl in the latter equation with (21). We can clearly see that
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Fig. 3. Repetition-aided (RAID) echoing for the hybrid analog-digital architec-
ture

impairments originating from processing the received signals
with both Wl and Fl, have completely been suppressed. In
(25), pl indeed is the desired estimate, i.e., H†Hql, corrupted
by distortions emanating from the BS-side decomposition, e(t)l ,

and the MS side decomposition, e(r)l (both investigated later in
the next subsection). Both UL and DL phases of he process are
illustrated in Fig. 3, and detailed in Table IV.

Remark 3: Note that employing this process reduces the
hybrid analog-digital architecture into a conventional MIMO
channel: any transmitted vector in the DL, (f̃lg̃l), can be
received in a “MIMO-like” fashion, as seen from (23), at a
cost of Kr channel uses (the same holds for the UL, as seen
from (24)).

It can be seen from the above, that in the DL (resp. UL), d
RF chains are active at the BS (resp. MS), while all r RF chains
are used at the MS (resp. BS), to minimize the overhead. With
this in mind, it can be seen that the associated overhead with
each echoing, Ω = (M +N)/r (channel uses), will decrease
as more RF chains are used.

2) Imperfect Compensation of Analog-Processing
Impairments: Though the above method perfectly removes all
artifacts of analog processing, the overhead is proportional to
(M +N)/r. A natural question is whether a similar result can
still be achieved when Dr and Dt are truncated matrices i.e.
when Kr < N/r and Kt < M/r. Perfect cancellation of API
relies on a careful choice of the analog precoder/combiner for
each measurement, by picking {Wl,k}Kr

k=1 and {Fl,m}Kt
m=1 to

span all the columns of (square) DFT matrices. We investigate
the effect of picking Dr and Dt as truncated matrices, i.e.
when Kr < N/r and Kt < M/r. Focusing our discussion on
just analog precoders for brevity, we seek to find a (tall) matrix
D̃t ∈ C

M×(ηM), η < 1, such that,⎧⎨
⎩min

D̃t

‖ 1
M IM − D̃tD̃

†
t‖2F

s. t. D̃t ∈ SM, ηM .
(26)

Due to the apparent difficulty of the problem, one can resort
to stochastic optimization tools, e.g. simulated annealing: this
approach is ideal for the design of D̃t (and D̃r as well),
since it is completely independent of all parameters (except
M,N and η), and can thus be computed off-line and stored
for later use. Then, the resulting overhead would be reduced to

Algorithm 1: Subspace Estimation and Decomposition (SED)
for Hybrid Analog-Digital Architecture

// Estimate Γ̃1 and Φ̃1

Γ̃1, Σ̃1 = SE-ARN (H , d)
Φ̃1 = SE-ARN (H†, d)
// Decompose Γ̃1 and Φ̃1

[F , G] = BCD-SD (Γ̃1, ρ)
[W , U ] = BCD-SD (Φ̃1, ρ)
Perform waterfilling on Σ̃1

Ω = ηM+N
r . Further investigations along this line are outside

the scope of this work, but we opted to include them briefly, for
completeness.

C. Proposed Algorithms

Combining the results of the previous subsections, we can
now formulate our algorithm for Subspace Estimation and
Decomposition (SED) for the hybrid analog-digital architec-
ture (shown in Algorithm 1): estimates of the right/left singular
subspaces, Γ̃1 and Φ̃1, can be obtained by using the SE-
ARN procedure (Sect. III), keeping in mind that the echoing
phase (Steps 1.a and 1.b) is now replaced by the RAID echo-
ing procedure (Table IV. Then, the multi-dimensional subspace
decomposition procedure, BCD-SD in Sect. IV-A, is then used
to approximate each of the estimated singular spaces, by a
cascade of analog and digital precoder/combiner. {We high-
light a desirable feature for the SED algorithm: the subspace
estimation mechanism is totally decoupled from the subspace
decomposition part, and thus any of the latter parts can be
substituted, if desired.

Note that previously proposed algorithms within this context
such as the PM and TQR in [15], are no longer applicable here:
indeed both rely on the MS being able to amplify-and-forward
its received signal at the antennas - clearly this modus operandi
cannot be supported by the hybrid analog-digital architecture.
Interestingly, it is possible to apply elements from the RAID
echoing structure that we developed, effectively modifying the
original echoing structure of the latter schemes, and adapt-
ing them to the hybrid analog-digital architecture (as shown in
Algorithm 2).

Operationally, the proposed MTQR algorithm is the same
as the Two-way QR (TQR) in [15], whereby Γ1 and Φ1 are
obtained iteratively: as I → ∞, X → Γ1 (at BS) and Y → Φ1

(at MS). At each iteration of the algorithm, the BS sends X in
the downlink, and the QR algorithm is applied to the received
signal. Then, the resulting signal is sent by the MS in the uplink,
and the QR algorithm is applied at the BS to form Y . While
TQR assumes fully digital MIMO transmission, our contribu-
tion is to apply the RAID scheme, to make the transmission
compatible with the hybrid analog-digital systems.

D. Bounds on Eigenvalue Perturbation

It can be clearly seen that the iterative nature of Algorithm 2
makes the application of Lemma 2, to quantify the impact of
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Algorithm 2. Modified Two-way QR (MTQR) for Hybrid
Analog-Digital Architecture

for l = 1, 2, . . . , Ido
// Decompose each column of X
[X]n ≈ f̃ng̃n, ∀n ∈ d (using Lemma 3)
X̃ = [f̃1g̃1 · · · , f̃dg̃d]

// Send X̃ in DL, one column at a time
Tk = W †

kHX̃, ∀k ∈ {Kr}
Y =

∑Kr

k=1 WkTk; Y = qr(Y )
// Decompose of Y
[Y ]n ≈ w̃nũn, ∀n ∈ d (using Lemma 3)
Ỹ = [w̃1ũ1 · · · , w̃dũd]

// Send Ỹ in UL, one column at a time
Sk = F †

kH
†Ỹ , ∀k ∈ {Kt}

Z =
∑Kt

k=1 FkSk; X = qr(Z)
end for

decomposition and approximation errors, not possible. On the
other hand, for Algorithm 1, the fact that each H†Hql is only
corrupted by two sources of DID, e(r)l and e

(r)
l , makes the latter

possible. With that in mind, we specialize the result of Sect. III-
B and Lemma 2 (developed for generic MIMO systems) to the
case of Algorithm 1 in the hybrid analog-digital architecture.
We thus relate the eigenvalues of Tm at the output of SE-ARN,
to the dominant eigenvalues of Cm, and consequently of A
(Sect. III-B).

Corollary 1: Every eigenvalue λ̃ of Tm satisfies

|λ̃− λ| ≤ m‖H‖2F
(
3 +

1

d‖H‖F

)
where λ in an eigenvalue of Cm.

Proof: Refer to Appendix D �
Moreover, recall that as m → M , λ is an eigenvalue of A

(Lemma 1 - P3). Thus, this result directly relates the eigenval-
ues of Tm, to that of A: though this holds asymptotically in m,
our simulations will show that good approximations can still
be obtained, even for m � M . Note that we have ignored the
effect of DID compensation, within the RAID echoing process,
for convenience. As a result, the above bound is a “pessimistic”
performance measure.

E. Practical Implementation Aspects

We evaluate the communication overhead of both schemes,
in number of channel uses, keeping in mind that the actual over-
head will be dominated by the latter. Algorithm 1 requires Kt +
Kr channel uses per iteration, to estimate Γ̃1, and Kt +Kr to
estimate Φ̃1, for a total of

ΩSED = 2m
M +N

r
, (27)

m being the number of iterations for the Arnoldi process.
Letting I denote the number of iterations for MTQR, the
number of channel uses required for Algorithm 2 is,

ΩMTQR = dI
M +N

r
(28)

It should be emphasized here that our main focus in this work
is to investigate the principle of subspace estimation employ-
ing numerical techniques, and through simulations describe the
performance gain that can be expected by taking on such an
approach. Hence, our major concern is not to investigate a
stable and low-complexity technique that can be readily imple-
mented in practice. We will, however, provide suggestions
on what can be done to enhance the stability of the devised
schemes, while admitting that many of the problems connected
with practical implementation of the proposed method are sub-
ject to further study. Generally, it is known that the Arnoldi
(and Lanczos) algorithm may suffer from numerical stability
issues. Though analytically speaking, the basis Qm is easily
shown to be orthonormal, in practice, however, errors resulting
from floating-point operations lead to a loss in orthogonality
(the extent to which it happens is dependent on the applica-
tion) [20, Sec. 7.3]. Moreover, for our algorithm, noise inherent
to the echoing process will further amplify this effect. One
of the widely adopted fixes for this matter is the Implicitly
Restarted Arnoldi algorithm [20, Sec. 7.3]. We did experi-
ment with such an algorithm, and though it does enhance the
numerical stability of the algorithm, the resulting overhead
is increased by a large factor. This issue is critical for the
SED algorithm (that employs the RAID echoing), since it ren-
ders real-world implementation quite impractical. Moreover,
there are many problems connected with practical implemen-
tations of the Restarted Arnoldi method, that are subject to
further study. Other methods that might enhance the stability
the Arnoldi Iteration, such as deflation techniques, have been
reported in [29].

F. Discussion

We have presented an approach to maximizing the metric R
defined in (5). As mentioned earlier, the value of the objective
function is in general not an achievable rate for our system.
However, optimizing similar expressions related to achievable
rates has been proved to give good results in previous work on
transmission with partial CSI [30]. Since any rate achievable
with partial CSI, cannot be larger than the corresponding rate
achievable with perfect CSI, this criterion always provides an
upper bound on the achievable rates in our system. Hence, in
our approach, if the proposed algorithms result in values for
R that are closing in on the perfect CSI upper bound, then
the scheme is performing optimally (in the sense of achievable
rates).

With the above in mind, we use the following, as our
performance metric in the simulations,

R̃ = log2

∣∣∣∣∣Id
+

1

σ2
(r)

U †W †HFGG†F †H†WU(U †W †WU)−1

∣∣∣∣∣ .
(29)

In that sense, R̃ is the ‘user rate’ that is based on the actual chan-
nel H , and the precoders/combiners that are in turn designed
based on the estimated channel.
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V. NUMERICAL RESULTS

A. Simulation Setup

In this section, we numerically evaluate the performance of
our algorithms, in the context of a single-user MIMO link. We
adopt the prevalent physical representation of sparse mmWave
channels adopted in the literature, e.g., [6], [7], where only L
scatterers are assumed to contribute to the received signal -
an inherent property of the poor scattering nature in mmWave
channels,

H =

√
MN

L

L∑
i=1

βi ar

(
χ
(r)
i

)
a†
t

(
χ
(t)
i

)
(30)

where χ
(r)
i and χ

(t)
i are angles of arrival at the MS, and angles

of departure at the BS (AoA/AoD) of the ith path, respectively
(both assumed to be uniform over [−π/2, π/2]), βi is the com-
plex gain of the ith path such that βi ∼ CN (0, 1), ∀i. Finally,
ar(χ

(r)
i ) and at(χ

(t)
i ) are the array response vectors at both the

MS and BS, respectively. For simplicity, we will use uniform
linear arrays (ULAs), where we assume that the inter-element
spacing is equal to half of the wavelength. In what follows, we
also assume that M/r = 8 and N/r = 4, i.e., as M,N increase,
so does the number of RF chains.

1) Benchmarks/Upper Bounds: We use the Adaptive
Channel Estimation (ACE) method (Algorithm 2 in [7]) as a
benchmark, to estimate the mmWave channel. It is based on
sounding of hierarchical codebooks at the BS, feedback of
the best codebook indexes by the MS, and finding the ana-
log/digital precoders and combiners using OMP [6]. Moreover,
the authors characterized the resulting communication over-
head ΩACE , as a function of the codebook resolution. We used
the corresponding MATLAB implementation that was provided
by the authors. We adjust the number of iterations for both our
proposed schemes and the codebook resolution of benchmark
scheme, such that ΩSED = ΩMTQR � Ωo ≈ ΩACE . Note that
we do not assume any quantization for phases of the RF filters.
We also compare the performance of the algorithms against the
“optimal performance”, R� in (6), where full CSIT/CSIR is
assumed, fully digital precoding is employed, and the optimal
precoders are used. All curves are averaged over 500 channel
realizations.

Remark 4: Note that if one want to use “classical” pilot-
based channel estimation to estimate the DL channel, i.e., a
pilot sequence of minimum length M , then the same repetition-
based framework that was used in RAID echoing, has to be used
to cancel the effect of W from the effective channel estimate:
it can be easily seen that the resulting total (both DL and UL)
number of pilots slots would be 2MN/r2, thereby making the
latter method infeasible.

B. Performance Evaluation

We start by investigating the performance of our schemes
against the above benchmarks, for the case where M =
128, N = 64, L = 3, and m = 3d, for two cases: d = 1 and
d = 2 where the resulting overhead is Ωo = 72 and Ωo = 144
channel uses, respectively. It can be seen from Fig. 4 that both

Fig. 4. Average sum-rate of proposed schemes (M = 128, N = 64, d =
2, L = 3,m = 6)

proposed schemes exhibit relatively similar performances, that
are in turn very close to the optimal performance bound R�

(especially above −10 dB). This indeed suggests that the multi-
plexing gain achieved by conventional MIMO systems can still
be maintained in the hybrid analog-digital architecture, albeit
at a much lower cost: the number of required RF chains can
be drastically decreased, resulting in savings in terms of cost
and power consumption. Moreover, we observe a sharp and
significant performance gap between both our schemes and the
benchmark from [7], over all SNR ranges (the gap being more
significant in the low-SNR regime). We also evaluate the so-
called optimal decomposition schemes [4] [14] that can exactly
decompose Γ1 into FG (discussed in Sec. IV). Thus, the curves
labeled ’Optimal Decomp.’ refer to the case where the optimal
decomposition is used in conjunction with SED. Fig 4 clearly
reveals that the ability to optimally decompose the estimated
subspaces does not bring about additional gains. We note that
the tiny mismatch between ’Optimal Decomp.’ and Algorithm 1
is due to simulation resolution.

We attempt to shed light on the stability of the proposed
algorithms, as the number of paths in the mmWave channel, L,
increases (where we set M = 64, N = 32, d = 2,m = 6). For
clarity we restrict the result to the low SNR regime. Though a
degradation in the performance of both algorithms is expected,
as L increases, Fig. 5 clearly indicates that the latter degradation
is not quite significant. Though not visible here, our simulations
show that this degradation is not present in the medium-to-
high SNR region. As expected, this technique is best used for
channels with a few paths, e.g., mmWave channels.

We investigate the performance of both SED and MTQR
in terms of average subspace angle, θ = E[α(Γ1, Γ̃1)] where
α(Γ1, Γ̃1) (radians) is defined as the subspace angle between
Γ1 and Γ̃1 (implemented by computing the principal angles of
the latter subspaces). As shown in Fig. 6, both schemes exhibit
a similar behavior of better estimation accuracy, as the SNR
increases.

Remark 5: Though the performance of Algorithm 2 seems
to be better, Fig. 4–6 both suggest that this gap is quite narrow.
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Fig. 5. Effect of number of paths L, on the average user rate (M = 64, N =
32, d = 2,m = 6)

Fig. 6 Average subspace angle (M = 64, N = 32, d = 3, L = 4,m = 6)

Moreover, both algorithms seem to exhibit very similar behav-
ior. With that in mind, and for the sake of clarify of our results,
we opt to focus on Algorithm 1, the main object of investigation
in this work.

We next investigate its scalability: we scale up M and N
(assuming N = M/2, for simplicity), while keeping everything
else fixed, i.e., d = 2,m = 6, and consequently Ωo = 144. In
doing that, we noticed that the complexity of the benchmark
scheme [7] was prohibitively high, thus preventing us from
investigating its scalability: we were unable to get any results
for systems larger than 128× 64 . On the other hand, both our
algorithms exhibit no such problems since all the computations
that they involve are matrix-vectors/matrix-matrix operations.
Consequently, the complexity gap between Algorithm 1 and the
benchmark increases drastically, as M,N grow.

Fig 7 clearly shows that Algorithm 1 is able to harness the
significant array gain inherent to large antenna systems (by
closely following the optimal performance bound, R�, with a
small constant gap), while keeping the overhead remarkably
small. Though the performance might not be good enough to
offset the overhead, for the 16× 8 case, it surely does for the
256× 128. Moreover, note that the gap between the optimal
performance and Algorithm 1 is quite small (across the entire
SNR range) for small systems dimensions, and quite small even
for large values of M (at high SNR). The key to this result is to
have M/r and N/r fixed, as M,N increase.

Fig. 7. Average user-rate for different M,N (N = M/2, d = 2, L = 4,m =
6,Ωo = 144)

Fig. 8. Average user-rate of proposed schemes over SCM channels
(M = 64, N = 32,m = 2d)

We also evaluate the performance of Algorithm 1 in a more
realistic manner, by adopting the Spatial Channel Model (SCM)
detailed in [31] [32], and modifying its parameters to emulate
mmWave channels: the number of paths is set to 4, the carrier
frequency to 60 GHz, the BS/MS array is modified to imple-
ment ULAs, and an ’urban micro’ scenario is selected, where
a small Ωo is desired. Fig. 8 shows the average performance
of such a system, with M = 64, N = 32,m = 2d, for several
values of d (each resulting in different values for Ωo). Though
both our algorithm and the benchmark exhibit similar perfor-
mances for d = 1, this gap increases with d, e.g. for d = 3 this
performance gap is quite significant. Moreover, we can clearly
see that Algorithm 1 yields a relatively high throughput in this
realistic simulation setting (especially for d = 3), while still
keeping the overhead at a relatively low level.

Evidently, increasing m (the number of iterations for the
Arnoldi) has the effect enhancing the estimation accuracy
(and increasing the communication overhead as well (27)).
The marginal improvement brought about by increasing m,
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is decreasing, and thus our simulations indicated that setting
2d ≤ m ≤ 3d provides a good trade-off.

C. Discussions

A few remarks are in order at this stage, regarding similari-
ties and differences between our two proposed algorithms. As
discussed in Remark 5, when the communication overhead is
normalized, both SED and MTQR exhibit a similar behavior
and performance profile, across the entire SNR range (with
a relatively small performance gap): indeed they can be used
interchangeably with no change at all in the operational require-
ments. However, as this work shows, we have an accurate
analytical description of the behavior of SED: the Arnoldi algo-
rithm was adapted to the subspace estimation part (with some
analytical performance guarantees), and BCD-SD to mathe-
matically describe the decomposition algorithm. In contrast,
MTQR is a (heuristic) variation on the original TQR, whose
behavior we have not modeled analytically.

One of the conclusions suggested by all the above results, is
the fact that the low-SNR performance of the proposed schemes
is rather poor. However, interestingly, Figs. 4–8 unambiguously
point out that this is the case for the benchmark scheme as well
(ACE in [6]): one might be tempted to conjecture at this point
that this low-SNR behavior is an inherent aspect of mmWave
channel estimation. Initial investigations reveal that, if more RF
chains (more than r) can be employed during the RAID echoing
phase, the low-SNR performance can be greatly boosted.

VI. CONCLUSION

We proposed an algorithm for blindly estimating the left
and right singular subspace of a mmWave MIMO channel, by
exploiting channel reciprocity that is inherent to TDD systems.
Though the algorithm is a perfect match for conventional (large)
MIMO systems, we extended it to operate under the constraints
dictated by the hybrid analog-digital architecture, and showed
via simulations that it is a good fit for large MIMO channels,
with low rank, e.g., mmWave channels. Finally, our simulations
showed that a similar performance to the ideal case (fully digi-
tal perfect CSI) can be achieved, with a only a few RF chains,
thereby resulting in significant saving in energy and cost, over
conventional MIMO systems.

APPENDIX

A. Proof of Lemma 1

(P1) : Combining steps (2.b) and (3.a) in the SE-ARN
procedure, we write,

Aql + w̃l =

l+1∑
i=1

[T̃m]i,l qi +

l∑
i=1

[Em]i,l qi ∀l ∈ {m},

We can rewrite the latter equation in matrix form, using the
definitions of T̃m, W̃m given in (9),

AQm + W̃m = QmT̃m + [T̃m]m+1,m qm+1b
†
m +QmEm

(31)

where bm is the mth elementary vector, and Em =
[Q†

mW̃m]U . We can further simplify the above, using the fact
that Q†

mQm = Im and Q†
mqm+1 = 0,

Q†
mAQm +Q†

mW̃m = T̃m +Em

Using the definition of Em, we write,

Q†
mAQm = T̃m + [Q†

mW̃m]U −Q†
mW̃m

= T̃m − Ẽm � Cm

where Ẽm = [Q†
mW̃m]SL, as defined in (9).

(P2) : Noting that T̃m +Em = Cm +Q†
mW̃m, we rewrite

(31) as,

AQm −QmCm = [T̃m]m+1,m qm+1b
†
m − (IM −QmQ†

m)W̃m

Multiplying the latter equation by s
(m)
i , and using the fact that

Cms
(m)
i = λ

(m)
i s

(m)
i , and Qms

(m)
i = θ

(m)
i

Aθ
(m)
i − λ

(m)
i θ

(m)
i = [T̃m]m+1,m qm+1b

†
ms

(m)
i

− (IM −QmQ†
m)W̃ms

(m)
i

Finally, the desired residual is upper bounded as,

‖Aθ
(m)
i − λ

(m)
i θ

(m)
i ‖22

≤
([

T̃m

]
m+1,m

∣∣∣b†ms
(m)
i

∣∣∣
)2

+
∥∥∥(IM −QmQ†

m

)
W̃ms

(m)
i

∥∥∥2

F

≤
(
[T̃m]m+1,m

∣∣∣[s(m)
i

]
m

∣∣∣)2

+
∥∥∥IM −QmQ†

m

∥∥∥2

F
‖W̃m‖2F

where the last inequality follows from ‖B1B2x‖22 ≤
‖B1‖2F .‖B2‖2F .‖x‖22
(P3) : The proof immediately follows by noting that ‖IM −

QmQ†
m‖2F → 0 and [T̃m]m+1,m → 0, as m → M , thereby

implying that ‖Aθ
(M)
i − λ

(M)
i θ

(M)
i ‖22 � 1.

B. Proof of Lemma 2

The proof follows from a direct application of the Bauer-
Fike Theorem [22, Th. 7.2.2]. Let Cm = SmΛmS−1

m be the
diagonalizable matrix in question, and Tm = Cm + Pm the
“perturbed” matrix. Then, every eigenvalue λ̃ of Tm satisfies,

|λ̃− λ|2 ≤ ‖Sm‖22.‖S−1
m ‖22.‖Pm‖22 = ‖Q†

mW̃m‖22
where λ is an eigenvalue of Cm, and ‖B‖2 � σmax(B) is the
vector-induced matrix 2-norm. The last equality follows from
the fact that Sm is unitary, as discussed in Lemma 1. Using the
fact that ‖B‖2 ≤ ‖B‖F , we rewrite the last equation,

|λ̃− λ|2 ≤ ‖Q†
mW̃m‖2F ≤ ‖Qm‖2F ‖W̃m‖2F = m‖W̃m‖2F

This concludes the proof.

C. Proof of Lemma 3

Note that there is not loss in optimality by assuming the
g ∈ R+. Moreover, exploiting the structure of ho, the globally
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optimal solution can be found by optimizing for f , assuming g
is fixed (and vice) versa, i.e.,

f� �
= argmin

f
g2(f†f)− 2g�(f†γ̃1), s. t. [f ]i = 1/

√
M ejφi

(a)⇔ {φ�
i } = argmax

{φi}
1/

√
M �

(
M∑
i=1

ri e
j(θi−φi)

)

{φ�
i } = argmax

{φi}

M∑
i=1

�
(
ej(θi−φi)

)
= {θi}

where (a) follows from applying the one-to-one map-
ping [f ]i → 1/

√
M ejφi , ∀i. Thus, [f�]i = 1/

√
M ejθi , ∀i.

Plugging f� into the original problem, the optimization of g
is a simple unconstrained quadratic problem,

g�
�
= argmin

g
g2 − 2g(‖γ̃1‖1/

√
M) = ‖γ̃1‖1/

√
M (32)

D. Proof of Corrollary 1

The proof consists of finding a closed-from expression for
W̃m as a function of e

(t)
l and e

(r)
l , and applying the result

of Lemma 2. Note that w̃l in (8) can represent any distor-
tion, and by comparing pl in both (8) and (25), can infer that
w̃l = −H†He

(t)
l − (1/d)H†e(r)l . Thus, W̃m in (9) can be

written as,

W̃m = −H†H
[
e
(t)
1 , · · · , e(t)m

]
− (1/d)H†

[
e
(r)
1 , · · · , e(r)m

]
� −H†HE(t) − (1/d)H†E(r)

Then using properties of the Frobenius norm,

‖W̃m‖F ≤ ‖H‖2F ‖E(t)‖F + (1/d)‖H‖F ‖E(r)‖F (33)

On the other hand, recall that e(t)l = ql − f̃lg̃l and e
(r)
l = s̃l −

w̃lũl. Thus, using the results of Sec. IV-A2,

‖e(t)l ‖2 ≤ ‖ql‖2 + ‖f̃lg̃l‖2 ≤ 2

‖e(r)l ‖2 ≤ ‖dHf̃lg̃l‖2 + ‖w̃lũl‖2 ≤ 1 + d‖H‖F
and it follows that

‖E(t)‖F ≤ 2
√
m, ‖E(r)‖F ≤ √

m(1 + d‖H‖F ) (34)

The upper bound follows by combining (33) and (34).
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